Maskiner trenger ikke lenger vår hjelp til å lære

Maskiner trenger ikke lenger vår hjelp til å lære

Forskere som arbeider med swarm roboter sier det er nå mulig for maskiner å lære hvordan naturlige eller kunstige systemer fungerer ved å observere dem uten å bli fortalt hva de skal se etter.

Dette kan føre til fremskritt i hvordan maskiner utlede kunnskap og bruke det til å oppdage atferd og abnormiteter.

"I motsetning til i den opprinnelige Turing-testen er våre forhørere imidlertid ikke menneskelige, men heller dataprogrammer som lærer seg selv."

Teknologien kan forbedre sikkerhetsapplikasjoner, som løgndeteksjon eller identitetsbekreftelse, og gjøre dataspill mer realistisk.

Det betyr også at maskiner kan forutsi blant annet hvordan mennesker og andre levende ting opptrer.

Turing-testen

Oppdagelsen, publisert i tidsskriftet Swarm Intelligence, tar inspirasjon fra arbeidet til banebrytende datavitenskapsmann Alan Turing, som foreslo en test, som en maskin kunne passere dersom den oppførte seg uadskillelig fra et menneske. I denne testen utveksler en interrogator meldinger med to spillere i et annet rom: ett menneske, den andre en maskin.

Forhøreren må finne ut hvilken av de to spillerne som er menneskelig. Hvis de konsekvent ikke klarer å gjøre det - noe som betyr at de ikke er mer vellykkede enn om de hadde valgt en spiller tilfeldig - har maskinen bestått testen, og anses å ha menneskelig intelligens.

"Vår undersøkelse bruker Turing-testen til å avsløre hvordan et gitt system - ikke nødvendigvis et menneskeverk. I vårt tilfelle satte vi en roboter under overvåkning og ønsket å finne ut hvilke regler som førte til deres bevegelser, forklarer Roderich Gross fra den automatiske kontrollen og systemingeniøravdelingen ved Sheffield University.

"For å gjøre det, legger vi en ny sværmagert av å lære roboter - under overvåking også. Bevegelsene til alle roboter ble registrert, og bevegelsesdataene ble vist til avhørere, legger han til.

"I motsetning til den opprinnelige Turing-testen er våre forhørsmenn imidlertid ikke menneskelige, men heller dataprogrammer som lærer seg selv. Deres oppgave er å skille mellom roboter fra enten sværme. De belønnes for riktig kategorisering av bevegelsesdataene fra den opprinnelige sværmen som ekte, og de fra den andre sværmen som forfalsket. Læringsrobotene som lykkes i å lure en forhørsmann som gjør det, tror at deres bevegelsesdata var ekte - motta en belønning. "


 Få den siste via e-post

Ukentlig magasin Daglig Inspirasjon

Gross sier at fordelen med tilnærmingen, kalt "Turing Learning", er at mennesker ikke lenger trenger å fortelle maskiner hva de skal se etter.

Robot maler som Picasso

Tenk deg at du vil at en robot skal male som Picasso. Konvensjonelle maskininlæringsalgoritmer ville rangere robotens malerier for hvor tett de lignet en Picasso. Men noen ville måtte fortelle algoritmen hva som anses å være lik Picasso til å begynne med.

Turing Learning trenger ikke slik forkunnskap. Det ville rett og slett belønne roboten hvis den malte noe som ble ansett som ekte av forhørsmennene. Turing Learning lærer samtidig å forhøre og hvordan man skal male.

Gross sier at han mener Turing Learning kan føre til fremskritt innen vitenskap og teknologi.

"Forskere kan bruke den til å oppdage reglene for naturlige eller kunstige systemer, spesielt hvor adferd ikke lett kan karakteriseres ved hjelp av likhetstall," sier han.

"Dataspill, for eksempel, kan få realisme da virtuelle spillere kan observere og påta seg karakteristiske trekk ved deres menneskelige kolleger. De ville ikke bare kopiere den observerte oppførselen, men bare avsløre hva som gjør menneskelige spillere særegne fra resten. "

Hittil har Gross og hans team testet Turing Learning i roboteresmermer, men neste skritt er å avsløre arbeidet til noen dyrekollekter som fiskeskoler eller kolonier av bier. Dette kan føre til en bedre forståelse av hvilke faktorer som påvirker oppførselen til disse dyrene, og til slutt informere politikken for deres beskyttelse.

kilde: University of Sheffield

Relaterte bøker

at

Kan hende du også liker

følg InnerSelf på

facebook icontwitter ikonetyoutube-ikonetinstagram ikonpintrest-ikonetrss ikon

 Få den siste via e-post

Ukentlig magasin Daglig Inspirasjon

TILGJENGELIGE SPRÅK

enafarzh-CNzh-TWdanltlfifrdeeliwhihuiditjakomsnofaplptroruesswsvthtrukurvi

MEST LES

Robot som utfører hinduistisk ritual
Utfører roboter hinduistiske ritualer og erstatter tilbedere?
by Holly Walters
Det er ikke bare kunstnere og lærere som mister søvn over fremskritt innen automatisering og kunstig...
rolig gate i et bygdesamfunn
Hvorfor små bygdesamfunn ofte unngår nykommere som trengs
by Saleena skinke
Hvorfor skyr små bygdesamfunn ofte nykommere, selv når de trenger dem?
ung kvinne som bruker smarttelefonen sin
Beskyttelse av personvern på nettet begynner med å takle "digital oppsigelse"
by Meiling Fong og Zeynep Arsel
I bytte mot tilgang til deres digitale produkter og tjenester, samler og bruker mange teknologiselskaper...
norrøne myter 3 15
Hvorfor gamle norrøne myter varer i populærkulturen
by Carolyne Larrington
Fra Wagner til William Morris på slutten av 19-tallet, via Tolkiens dverger og CS Lewiss The...
minner fra musikk 3 9
Hvorfor bringer musikk tilbake minner?
by Kelly Jakubowski
Å høre det musikkstykket tar deg rett tilbake til der du var, hvem du var sammen med og...
en tegning av to sammenslåtte hender - den ene består av fredssymboler, den andre av hjerter
Du går ikke til himmelen, du vokser til himmelen
by Barbara Y. Martin og Dimitri Moraitis
Metafysikk lærer at du ikke kommer til himmelen bare fordi du har vært en god person; du vokser...
farene ved ai 3 15
AI er ikke å tenke og føle – faren ligger i å tenke det kan
by Nir Eisikovits
ChatGPT og lignende store språkmodeller kan gi overbevisende, menneskelignende svar på en endeløs...
tre hunder som sitter ute i naturen
Hvordan være den personen hunden din trenger og respekterer
by Jesse Sternberg
Selv om det virket som om jeg var reservert (en genuin egenskap ved en alfa), var oppmerksomheten min...

Nye holdninger - Nye muligheter

InnerSelf.comClimateImpactNews.com | InnerPower.net
MightyNatural.com | WholisticPolitics.com | InnerSelf Market
Copyright © 1985 - 2021 InnerSelf Publikasjoner. Alle rettigheter reservert.